Mean square solution of Bessel differential equation with uncertainties
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملBessel Beams 2 Solution 2.1 Solution via the Wave Equation
where ρ = √ x2 + y2. Then, the problem is to deduce the form of the radial function f(ρ) and any relevant condition on the wave number kz, and to relate that scalar wave function to a complete solution of Maxwell’s equations. The waveform (1) has both wave velocity and group velocity equal to ω/kz. Comment on the apparent superluminal character of the wave in case that kz < k = ω/c, where c is ...
متن کاملExistence of a Mean-Square Stabilizing Solution to a Modified Algebraic Riccati Equation
In this paper, we investigate a mean-square stabilizing solution to a modified algebraic Riccati equation (MARE), which arises in our previous work on the linear quadratic optimal control for linear time-invariant discrete systems with random input gains. An explicit necessary and sufficient condition ensuring the existence of a mean-square stabilizing solution is given directly in terms of the...
متن کاملApproximate solution of fourth order differential equation in Neumann problem
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.01.034